THE UNREASONABLE EFFECTIVENESS OF RIGHT MODULES IN HOMOTOPY THEORY

CONNOR MALIN

ABSTRACT. Here is a list of theorems which can be proven by contemplating the category of right modules over a spectral operad. We expect some of these results, particularly those about chromatic homotopy theory and 1semiadditivity, are known to experts.

Hypotheses 0.1. We consider presentable categories C such that $Sp(C) = Sp_E$, a Bousfield localization of spectra. All operads are reduced and level-wise finite spectra. All functors are finitary, i.e. commute with filtered colimits. B denotes the covariant theory of bar-cobar duality, and K denotes its dual contravariant theory. These exist for algebras, modules, comodules, etc.

Proposition 0.2. Suppose $\partial_* \mathrm{Id}_C$ is level-wise finite. If $F : C \to \mathrm{Sp}_E$ also has level-wise finite derivatives, then we have an equivalence

$$\partial_* F \simeq B(\operatorname{Hom}^{\Sigma}(F, \Sigma_C^{\infty}), \operatorname{CoEnd}(\Sigma_C^{\infty}), 1)^{\vee} =: K(\operatorname{Hom}^{\Sigma}(F, \Sigma_C^{\infty})).$$

Here

$$\operatorname{Hom}^{\Sigma}(-,-) := \{\operatorname{Nat}((-),(-)^{\wedge n})\}$$

is an enrichment in $SymSeq(Sp_E)$ and CoEnd(-) is the endomorphism object.

For any F there is a right $K(\text{CoEnd}(\Sigma_C^{\infty}))$ -module structure on $\partial_*(F)$ which when ∂_*F is level-wise finite, arises in the above way.

Corollary 0.3. If $c \in C$ is compact, then there is an equivalence

$$\partial_* \Sigma_E^\infty C(c, -) \simeq K(\{(\Sigma_C^\infty c)^{\wedge n}\}_{n \in \mathbb{N}}).$$

Example 0.4. If C is a reasonable localization of spaces, then

 $\operatorname{CoEnd}(\Sigma_C^\infty) \simeq \operatorname{com}_E,$

and the formula for the derivatives of a representable functor recovers the localized formula due to Goodwillie. The associated right \lim_{E} module structure agrees with the localization of Arone-Ching's.

Corollary 0.5. If O is a level-wise finite reduced operad, then

$$\operatorname{CoEnd}(\Sigma^{\infty}_{\operatorname{Alg}_{O}}) \simeq K(O).$$

Hence $\partial_* F$ has a right O-module structure. If A is a compact object in Alg_O, then

$$\partial_* \Sigma_E^{\infty} \operatorname{Alg}_O(A, -) \simeq K(\operatorname{forget}_{\operatorname{Coalg}}^{\operatorname{RMod}}(B(A))).$$

Date: April 22, 2025.

¹This formula is applying the O-bar construction to the algebra A, and then applying K(O)-Koszul duality to the associated right K(O)-module.

Corollary 0.6. If O, P are Morita equivalent ² level-finite, reduced operads, then there is some $X \in \text{Pic}(\text{Sp}_E)^3$ such that

$$O \simeq P \wedge \operatorname{End}(X).$$

Corollary 0.7. If O is a level-finite reduced operad, then any reasonable theories of bar-cobar duality for O-algebras are equivalent.

Proposition 0.8 (Folklore). If B(R) is Σ -finite⁴, then there is an equivalence

$$P_{\infty}B(R, O, -)(A) \simeq \Omega(B(R), B(O), B(A)).$$

In particular, if B(O) is Σ -finite applying this to O establishes that the unit of barcobar duality for algebras is an equivalence when the Goodwillie tower converges.

Corollary 0.9 (Ayala-Francis). For a framed n-manifold, the Goodwillie approximation of the factorization homology of an E_n -algebra A is

$$P_{\infty}(\int_{M}(-))(A) \simeq \int^{M^{+}} \Sigma^{n} B(A).$$

Proposition 0.10 (cf. Heuts). If M is a coanalytic monad ⁵ on the category $\operatorname{Sp}_{T_h}^6$ which is induced by an adjunction with right adjoint forget, then M is the monad associated to the operad End(forget).

Corollary 0.11. Heuts' Lie algebra model of unstable homotopy theory

$$\operatorname{Top}_{v_h} \simeq \operatorname{Alg}_{\operatorname{lie}}(\operatorname{Sp}_{T_h})$$

can be implemented by taking a v_h periodic space X to $\Phi(X)^7$ with the tautological action of $\operatorname{End}(\Phi) \simeq \operatorname{lie}_{T_h}$. If F is a polynomial, then it may be written as

$$X \to B(\partial_* F, \text{lie}, \Phi(-)).$$

Theorem 0.12 (Behrens-Rezk, Heuts). If the Goodwillie tower of the identity converges at $X \in \text{Top}_{v_h}$, then there is an equivalence of Lie algebras

$$\Phi(X) \simeq \Omega(1, \operatorname{com}_{T_n}, \Sigma_{T_n}^{\infty} X).$$

Theorem 0.13 (Conjecture of Arone-Ching). There is a notion of divided power right O-modules such that for $F : \operatorname{Top}_* \to \operatorname{Sp}, \partial_* F$ has a divided power right liemodule structure. This assignment induces an equivalence

$$\operatorname{Poly}(\operatorname{Top}_*, \operatorname{Sp}) \simeq \operatorname{RMod}_{\operatorname{lie}}^{dp, <\infty}.$$

A version holds for reasonable localizations of Top_* .

Proposition 0.14. If Alg_O for $O \in Operad(Sp_E)$ has

$$\operatorname{Poly}(\operatorname{Top}_*, \operatorname{Sp}) \simeq \operatorname{RMod}_{O}^{dp, <\infty}$$

then Sp_E is 1-semiadditive.

²Morita equivalent means equivalent categories of algebras.

 $^{^3\}mathrm{The}$ Picard group $\mathrm{Pic}(\mathrm{Sp}_E)$ is the group of objects invertible with respect to the smash product.

⁴Level-wise equivariantly a finite Borel Σ_i -spectrum.

⁵In the T_n -local setting this just means it splits like the free-forgetful monad of an operad.

 $^{^{6}\}mathrm{This}$ is the telescopic spectrum which appears in chromatic homotopy theory.

 $^{{}^{7}\}Phi: \operatorname{Top}_{v_{h}} \to \operatorname{Sp}_{T_{h}}$ is the Bousfield-Kuhn functor, a section of $\Omega_{v_{h}}^{\infty}$.

Corollary 0.15. Suppose C is a reasonable localization of n-connected, pointed spaces such that

$$C \simeq \operatorname{Alg}_O(\operatorname{Sp}_E),$$

then Sp_E is 1-semiadditive.