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1. Weiss (co)sheaves

These notes are written to accompany a talk at University of Victoria.
Let 𝑋 be a smooth 𝑛-manifold. Fix and∞-category C which admits (co)limits. Throughout this
section, we allow 𝑛 = ∞ and use the convention that an∞-manifold is just a CW-complex 1.

Definition 1.0.1. A functor 𝐹 : Open(𝑋 )op → C satisfies descent for a covering {𝑈𝑖}𝑖∈𝐼 , if there
is an equivalence

𝐹 (𝑋 ) ≃−→ lim
𝑆⊂𝐼

𝐹

(⋂
𝑖∈𝑆

𝑈𝑖

)
,

where 𝑆 ranges over the finite subset of 𝐼 .

Definition 1.0.2. A 𝑘-good Weiss cover of an 𝑛-manifold 𝑋 is an open cover {𝑈𝑖}𝑖∈𝐼 for which
any𝑈𝑖 has at most 𝑘 path components each of which is contractible. We require that the inter-
section of any finite number of opens has at most 𝑘-components each of which is contractible.
The cover is required to have the property that any set of 𝑘 or fewer points is contained inside
some open𝑈𝑖 .

If 𝑛 < ∞ every smooth manifold has a 𝑘-good Weiss cover, even one in which the intersections
are diffeomorphic to

⊔
𝑖 R

𝑛 . If 𝑛 = ∞, every CW-complex is equivalent to one which has a
𝑘-good Weiss cover. 2

Definition 1.0.3. For a functor 𝐹 : Open(𝑋 )op → C, the 𝑘th embedding calculus approxima-
tion 𝑇𝑘 (𝐹 ) : Open(𝑋 ) → C is the sheafification of 𝐹 with respect to 𝑘-good Weiss covers.

Remark 1.0.4. We are primarily interested in topological presheaves, i.e. those defined on the
entire ∞-category Mfld𝑛 . In these cases, one can compute 𝑇𝑘 (𝐹 ) (𝑀) by the right Kan extension
(factorization cohomology) of the restriction to the category of manifolds diffeomorphic to a disjoint
union of disks: ∫ 𝑀

𝐹 |Disk𝑛 :=
∫

⊔
𝑖 R

𝑛∈Disk𝑛
C(Emb(

⊔
𝑖

R𝑛), 𝑀), 𝐹 (
⊔
𝑖

R𝑛)) .

Date: May 20, 2024.
1In reality, the stabilization of the ∞-category of (tame) manifolds and embeddings with respect to cartesian

product with R is Topfin
/BO, not quite Top∗.

2There are broader classes of 𝑘-covers which define the same category of sheaves.
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This latter end is just the space of natural transformations Nat(Emb(−, 𝑀) |Disk𝑛 , 𝐹 |Disk𝑛 )

These sheafifications exist and are equipped with a map 𝐹 → 𝑇𝑘 (𝐹 ) for formal reasons. As a
consequence, we have a tower

𝑇∞(𝐹 ) (𝑀) := lim
𝑖→∞

𝑇𝑖 (𝐹 ) (𝑀)

. . .

𝑇1(𝐹 ) (𝑀)

𝐹 (𝑀) 𝑇0(𝐹 ) (𝑀)

We call fiber(𝑇𝑘 (𝐹 ) (𝑀) → 𝑇𝑘−1(𝐹 ) (𝑀)) the layers of the embedding calculus tower. Such fibers
are classified but have proved largely intractable to study though some computations exist in
the rational case.
The fundamental reason geometric topologists are interested in embedding calculus is that it
accurately describes spaces of embeddings in high enough codimension:

Theorem 1.0.5 (Goodwillie-Klein-Weiss). If 𝑀 is a smooth manifold of handle dimension3 𝑚
and 𝑁 is a smooth 𝑛-manifold such that 𝑛 −𝑚 ≥ 3, then 𝑇∞(Emb(−, 𝑁 )) (𝑀) ≃ Emb(𝑀, 𝑁 ).

If instead we are dealing with covariant functors 𝐹 : Open(𝑋 ) → Top∗, we could produce a
formally dual theory of Weiss cosheaves, which would form a tower mapping into the functor
𝐹 .

Example 1.0.6. The assignment𝑈 ↦→ Conf (𝑈 , 𝑘) satisfies codescent for the 𝑘-good Weiss covers.

The theory of Weiss cosheaves shows up in the study of factorization algebras. If one is in-
terested in studying embeddings, unfortunately, it is difficult to use Weiss cosheaves. This is
because the analog of Goodwillie-Klein-Weiss for Emb(𝑀,−) is far from true, essentially be-
cause the spaces Emb(𝑀,

⊔
𝑖 R

𝑛) contain approximately the same information as 𝑖 increases,
especially if𝑀 is connected.

2. Goodwillie calculus

Predating embedding calculus is Goodwillie calculus. Goodwillie calculus studies covariant
functors 𝐹 : Top∗ → Spec which preserve 0-maps.

3The handle dimension is the minimum over all handle presentations of the largest index of a handle. It may
be less than the actual dimension if the manifold is noncompact.
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Definition 2.0.1. The 𝑘th Goodwillie approximation of 𝐹

𝐹 → 𝑃𝑘 (𝐹 )
is the initial object in the∞-category of Weiss 𝑘-cosheaves under 𝐹 .

Unlike cosheafification with respect to 𝑘-good Weiss covers, there is no obvious reason why
𝑃𝑘 (𝐹 ) should exist since cosheaves are defined by colimits, and so there is not a formal process
to construct maps into them. The fact that such universal cosheaves actually do exist is pow-
erful. Once constructed these approximations are much easier to compute with than those of
embedding calculus.

Example 2.0.2. If 𝐹 is a Weiss 𝑘-cosheaf, then 𝑃𝑘 (𝐹 ) ≃ 𝐹 . We call such functors 𝑘-excisive. Some
examples of 𝑘-excisive functors are

𝑋 ↦→ Σ∞𝑋×𝑘 ,

𝑋 ↦→ Σ∞𝑋∧𝑘 .

Definition 2.0.3. We call a functor 𝑘-reduced if 𝑃𝑘 (𝐹 ) ≃ ∗. We call a functor 𝑘-homogeneous
if it is 𝑘-excisive and (𝑘 − 1)-reduced.

Example 2.0.4. The functor
𝑋 ↦→ Σ∞𝑋×𝑘

is not 𝑘-homogenous if 𝑘 > 1 since admits a nontrivial natural transformation to the (𝑘 − 1)-
excisive functor Σ∞𝑋×𝑘−1 (projection).

Theorem 2.0.5 (Goodwillie). Any 𝑘-homogeneous functor is of the form

𝑋 ↦→ (𝑍 ∧ Σ∞𝑋∧𝑘)Σ𝑘
for 𝑍 a spectrum with a Σ𝑘-action.

Goodwillie calculus provides systematic and powerful tools to study natural transformations
between functors. The author knows of no other way to prove the following:

Corollary 2.0.6. The space of natural transformations from Σ∞𝑋∧𝑖 to Σ∞𝑋∧ 𝑗 is contractible if
𝑖 > 𝑗 .

Proof. There are equivalences

Nat(Σ∞𝑋∧𝑖, Σ∞𝑋∧ 𝑗 ) ≃−→ Nat(𝑃 𝑗 (Σ∞𝑋∧𝑖), Σ∞𝑋∧ 𝑗 ) ≃ Nat(∗, Σ∞𝑋∧ 𝑗 ) = ∗
□

Of course, there are natural transformation in the other direction given by diagonal maps. Un-
derstanding these “upward” natural transformations between homogeneous functors is the key
to understanding some of the recent approaches to Goodwillie calculus using the lie and 𝐸𝑛
operads.
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Definition 2.0.7. The Σ𝑘-spectrum 𝜕𝑘𝐹 is the Σ𝑘-spectrum classifying the homogeneous func-
tor

𝐷𝑖 (𝐹 ) := fiber(𝑃𝑖 (𝐹 ) → 𝑃𝑖−1(𝐹 )) .
Example 2.0.8. There is an equivalence

𝐷𝑖 (Σ∞(−×𝑘)) (𝑋 ) ≃ Σ∞𝑋∧𝑘 .

Hence 𝜕𝑖 (Σ∞𝑋∧𝑘) ≃ Σ∞
+ Σ𝑘 . Further, the map

Σ∞𝑋∧𝑘 ≃ 𝐷𝑖 (Σ∞(−×𝑘)) (𝑋 ) → 𝑃𝑖 (Σ∞(−×𝑘) (𝑋 )) ≃ Σ∞(𝑋×𝑘)
witnesses the stable splitting

Σ∞𝑋×𝑘 ≃ Σ∞𝑋∧𝑘 ∨ . . . .

Example 2.0.9. There is an equivalence

𝜕𝑖 (Σ∞Map∗(𝑋,−)) ≃ Σ∞𝑋∧𝑖/(Δfat)∨.
Here Δfat is the complement of configuration space and ∨ is Spanier–Whitehead duality.

In his thesis, Arone gave an embedding calculus type model for the Goodwillie tower of this
functor which is sufficient to make this calculuation. Goodwillie also produced a combinatorial
computation of this derivative in his original paper.

3. Zero pointed manifolds

In the previous section, we saw the the homogeneous functors were built out of smash products
𝑋∧𝑘 rather than the categorical products 𝑋×𝑘 , since the latter has natural transformations to
excisive functors of degree < 𝑘 . In the context of manifold calculus, the role of 𝑋×𝑘 is usually
played by the configuration space Conf (𝑀,𝑘). This suggests the question: what plays the role
of 𝑋∧𝑘?

Definition 3.0.1. A zero-pointed 𝑛-manifold is a pointed topological space𝑊 such that𝑊 − ∗
is an 𝑛-manifold. A zero-pointed embedding of zero-pointed manifolds𝑊 to𝑊 ′ is a pointed
map which is a smooth embedding away from ∗ ∈𝑊 ′.

Definition 3.0.2. For a zero-pointed manifold𝑊 , we let 𝐶 (𝑊,𝑘) denote
{(𝑥1, . . . , 𝑥𝑘) |𝑥𝑖 = 𝑥 𝑗 =⇒ 𝑖 = 𝑗 or 𝑥𝑖 = 𝑥 𝑗 = ∗} ⊂𝑊 ×𝑘 .

We let𝐶 (𝑊, 𝑖) denote the quotient of𝐶 (𝑊,𝑘) by the fat wedge: the subspace of𝑊 ×𝑘 for which
any point is the basepoint.

The space 𝐶 (𝑊, 𝑖), which has a natural basepoint (∗, . . . , ∗), is the analog of the product space
𝑋×𝑖 , which has a natural basepoint (∗, . . . , ∗). The quotient 𝐶 (𝑊, 𝑖), with natural basepoint ∗,
is the analog of the smash product 𝑋∧𝑖 , with natural basepoint ∗.
Our results concern a variant of the category of zero-pointed manifolds which has the property
that 𝑛 = ∞ recovers the category of pointed, finite CW-complexes and pointed maps.
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Definition 3.0.3. Let ZMfldfr
𝑛 denote the category of (tame) framed zero-pointed manifolds, i.e.

those zero-pointed manifolds equipped with a framing of the complement of the distinguished
point. The morphisms are the zero-pointed framed embeddings. 4

4. Zero pointed framed manifold calculus

Suppose we have a functor 𝐹 : ZMfldfr
𝑛 → Spec which sends constant zero-pointed embeddings

to zero maps of spectra. Since we have analogs of Weiss 𝑘-cosheaves, 𝑋∧𝑘 , and our category
stabilized to Topfin

∗ , one might expect a good theory of Goodwillie calculus to exist. Fix 𝑛 < ∞.

Definition 4.0.1. The 𝑘th Goodwillie approximation of 𝐹

𝐹 → 𝑃𝑘 (𝐹 )
is the initial object in the∞-category of Weiss 𝑘-cosheaves under 𝐹 .

In certain cases, we can show these approximations exist by explicitly constructing them.

Example 4.0.2. If 𝐹 = Σ∞ZEmbfr(𝑀+,−), then 𝑃𝑖 (Σ∞ZEmbfr(𝑀+,−))(𝑁+) exists and agrees with
the embedding calculus approximation 𝑇𝑖 (Σ∞

+ Embfr(−, 𝑁 )) (𝑀), computed in the subcategory of
𝜋0-surjective embeddings. We will use the superscript sur to denote passage to the category of
𝜋0-surjective embeddings.

Taking 𝑛 = ∞, this recovers the model of the Goodwillie tower of Σ∞Map∗(𝑋,−) of Arone’s thesis.

In contrast to the Weiss cosheafification of Σ∞ZEmbfr(𝑀+,−), this is a very nontrivial approx-
imation, and there are situations where it conjecturally converges.
Although our definition of the Goodwillie approximations is identical to the definition for Top∗,
there is no reason that this approximation (should it exist) would produce the same result. This
is because not all Weiss cosheaves on ZMfldfr

𝑛 will extend to Top∗.
In fact, these approximations do exist.

Theorem 4.0.3 (M.). The 𝑘th Goodwillie approximation of 𝐹 exists. Further, the homogeneous
functors are classified by (𝑍 ∧ Σ∞𝐶 (𝑊,𝑘))Σ𝑘 .

Remark 4.0.4. A surprising consequence of this theorem is that

𝑀 → Σ∞𝑀∧𝑘

admits nontrivial natural transformations to

𝑀 → Σ∞𝐶 (𝑊, 𝑗)
for some 𝑗 < 𝑘 . Such natural transformations can be written down explicitly using Ching’s theory
of bar-cobar duality for operads and right modules.

4The definition of a zero-pointed framed embedding is more subtle than the unframed counterpart. It is made
more complicated by the necessity to give the set of all zero-pointed framed embeddings the correct topology.
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We also demonstrate structural results for derivatives.

Proposition 4.0.5 (M.). The derivatives of 𝐹 have the structure of a right module over the shifted
(reduced) 𝐸𝑛 operad in spectra. In terms of disk categories this means that some suspension of the
symmetric sequence 𝜕∗(𝐹 ) can be upgraded to a presheaf on the category Diskfr,sur

𝑛 . This completely
classifies the Goodwillie tower.

Finally, we have a Poincaré/Koszul duality theorem which computes the manifold Goodwillie
tower in terms of Weiss sheafification see Remark 1.0.4.

Theorem 4.0.6 (M.). There is an equivalence

𝑃∞(𝐹 ) (𝑀) ≃−→
∫ 𝑀+

𝑠(𝑛,𝑛)𝜕∗(𝐹 )

where
∫ 𝑀+

denotes factorization cohomology over𝑀+ of a presheaf on Diskfr,sur
𝑛 . 5

If we take 𝐹 to be factorization homology with coefficients in an 𝐸𝑛 algebra 𝐴, this ultimately
recovers a result of Ayala-Francis with a fundamentally different proof. Ayala-Francis proceed
by Goodwillie calculus in the category of 𝐸𝑛-algebras, while we proceed by Goodwillie calculus
in the category of framed manifolds. Miraculously both functor calculus towers agree.

5If 𝐹 is a Weiss cosheaf, then 𝜕∗ (𝐹 ) is Koszul dual to the restriction of 𝐹 to the disk category.
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